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Comprehensive study to ascertain the effect of MnO2 loading
on supercapacitive properties of conducting polymers
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ABSTRACT
This study reports the electrochemical properties of Manganese dioxide
(MnO2) with four types of conducting polymers such as polyaniline (PANi),
polythiophene (PTh), polypyyrole, and polyindole (PIn) by preparing their
composites. All four conducting polymers were prepared by chemical oxi-
dative polymerization approach. The prepared composites were character-
ized by X-ray diffraction (XRD), scanning electron microscope (SEM), Raman
spectroscopy, ultra–violate visible (UV–VIS) spectroscopy, and photolumi-
nance (PL). Similarly, the supercapacitive properties such, cyclic voltamme-
try (CV) curve, capacitance retention and cycle stability of composite
materials were investigated. The highest value of specific capacitance was
obtained for MnO2-PANi (Mn-PANi) composite, which was found to be
633.75 Fg�1.
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Introduction

Global demand of energy is increasing day by day. As demand of high energy storage system is
increased globally, study of electrode material for supercapacitor application became topic of
intense research. Climate changes and the limited availability of fossil fuels create a need of sus-
tainable and renewable energy sources. Thus, renewable energy production from sun and wind,
as well as the development of electric/hybrid electric vehicles with low CO2 emissions has started.
As the sun does not shine during the night and wind does not blow on demand, energy storage
systems play a major role and electrical energy storage systems, such as batteries, electrochemical
capacitors (ECs) are need to be developed. The performance of energy storage systems has to be
increased substantially to meet the higher requirements of future systems. ECs (also known as
supercapacitors or ultracapacitors) store energy by ion adsorption (electrochemical double-layer
capacitors) or fast surface redox reactions (pseudo-capacitors). These can be more efficient than
batteries used in electrical energy storage, when high power delivery or uptake is needed.
Numerous efforts have been taken to increase the specific capacitance value of the electrode
materials. The electrode materials with high capacity and cyclic stability found to possess great
supercapacitor performance.[1–3]

Over the past decades, various types of electrode materials are studied for high-performance
supercapacitor application and many approaches are employed to fabricate various composites
prepared using different types of electroactive materials. As lithium-ion batteries has some disad-
vantages such as slow power delivery or uptake, faster and higher power energy storage systems
are needed and for this, supercapacitor are considered as good alternative. ECs are power devices
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which can be fully charged or discharged in seconds. Their energy density (about 5Wh kg�1) is
lower as compared to batteries, but it shows much higher power delivery or uptake (10 kW kg�1)
for shorter times (a few seconds). They can replace batteries in the energy storage field for
uninterruptible power supplies (back-up supplies used to protect against power disruption) and
load-leveling.[4–6]

Transition metal oxides and conducting polymers are pseudo-capacitive active materials.
Addition of metal oxides to conducting polymers is called composites. Composite formation
improves electrochemical properties. Among transition metal oxides, manganese dioxide (MnO2)
shows best EC properties than others. PANi/MnO2 composite has been studied by Chen et al
who reported the specific capacitance value of 80 F g�1 and its stable columbic efficiency of about
98% up to 1000 cycles.[2]

Transition metal oxides such as RuO2,
[7] NiO,[8,9] CoOx, and MnO2

[10] are studied and imple-
mented as electrode materials for SCs.[11–15] Metal oxides have wide charge/discharge potential
range, but most of the transition metal oxides shows relatively low capacitance.[11,14] Conducting
polymers such as polyaniline (PANi) are reported as another promising material in the redox
SCs. Polymers shows advantages such as high capacitance, high conductivity, low cost, and ease
of fabrication.[16] But they suffer from disadvantages such as the relatively low mechanical stabil-
ity and cycle life which are major limitations for applications. In recent years, considerable efforts
have been made to couple the unique advantages of these capacitive materials for SCs by forma-
tion of composites.[17–22] Thus, the composites of PANi and MnO2 have attracted much attention
because of their low cost and eco-friendliness. The PANi-MnO2 composite can be prepared using
different chemical methods.[18,23–28] The PANi serves as an electroactive material for energy stor-
age and it is also a good coating layer to protect MnO2 from dissolution in acidic electrolytes.[23]

It is reported that the composite prepared by intercalation of PANi into layers of MnO2 shows
an enhanced specific capacitance of 330 F.g�1 by the synergistic effects.[24]

Motivating from above discussion, we planned to investigate the electrochemical properties of
MnO2 with four types of conducting polymers such as PANi, polythiophene (PTh), polypyyrole,
and polyindole (PIn) by preparing their composites. In this work, we studied the supercapacitive
properties such, cyclic voltammetry (CV) curve, capacitance retention, and cycle stability
performance of composite materials. Prime novelty of present work is that out of four type of
composites system of MnO2 with conducting polymer, we successfully optimized MnO2-PANi
(Mn-PANi) composite system as active electrode material for supercapacitor application.

Experimental

In this work, chemicals of analytical grade procured from SD Fine, India of purity 99.8% were
used without further purification. PANi was synthesized with chemical oxidative method using
ammonium persulfate as oxidizing agent. Both aniline and oxidant in 1:1 ratio were dissolved in
aqueous medium. The greenish black ppt was observed and it was kept for 24 h at room tempera-
ture in order to get complete polymerization. The obtained product was washed with distilled
water and dried in an oven.[29] For polymerization of pyrrole, FeCl3 was used as oxidant and
ethanol as solvent. The suspension was kept at room temperature for 24 h for polymerization.
Finally, solution was filtered and washed with acetone and distilled water to remove unreacted
pyrrole and excess ferric chloride. A black ppt of polypyrrole (PPy) was dried in an oven.[30]

PIn was prepared via chemical oxidative technique using FeCl3 as an oxidant. In this tech-
nique, monomer and oxidant in stoichiometric ratio were dissolved in distilled water. To that
reaction mixture, 0.1 M hydrogen peroxide was added to enhance the rate of reaction. The reac-
tion mixture was continuously stirred for 12 h with magnetic stirrer at 30 �C.[31] PTh was synthe-
sized at room temperature by mixing thiophene with ferric chloride in distilled water. Hydrogen
peroxide was added dropwise to reaction mixture to enhance the rate of reaction. The
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polymerization was allowed to take place with constant stirring for 24 h with magnetic stirring at
30�. Then concentrate sodium hydroxide solution was added to generate precipitate. The precipi-
tate was washed with distilled water and dried in oven.[32]

MnO2 was synthesized using co-precipitation method using manganese sulfate monohydrate
(MnSO4.H2O) and potassium permanganate (KMnO4). The solution was further stirred for
20min and kept at room temp. for 24 h. The solution was probe sonicated using sonicator (PCi,
750-F, PCI analytics Pvt. Ltd) to split the MnO2 particles to nano dimensions. The black-brown
product was obtained which is washed with deionized water and dried in oven.[33] The ex-situ
approach was adopted for preparation of polymer/metal oxide composite. The weight % stoichi-
ometry was adopted for preparation of composite. During preparation of composite, polymer
(1 g) and metal oxide (0.1 g) was added in organic media.

The X-ray diffraction (XRD) patterns of as prepared materials were recorded on Rigaku
Miniflex-II X-ray diffractometer. The morphology of samples was investigated using scanning
electron microscope (SEM) images obtained from JEOL JSM-7500F. The ultraviolet–visible
(UV–VIS) absorption spectra of composites were acquired using Agilent Cary 60 UV–VIS spec-
trophotometer. The Bruker RFS 27 Raman spectrometer was used for Raman analysis.
Electrochemical study of prepared samples was carried out using three-electrode cell systems
(CHI 660D, CHInstruments). As-prepared materials were used as the working electrode, platinum
wire as counter electrode and Ag/AgCl as the reference electrode. In this work, the working elec-
trodes were prepared by mixing 85wt.% sample that is Mn-PANi composite, 10 wt.% activated
carbon, and 5wt% polytetrafluoroethylene with acetone. Then the mixture of sample was coated
onto a nickel foam using spin coating technique. Photoluminescence (PL) spectra recorded using
fluorescence spectroscopy (FL spectrophotometer model F-7000; Hitachi).

Results and discussion

The XRD patterns of the MnO2 micromaterials are shown in Figure 1(a–i). The diffraction peak
which appeared at 2h¼ 18�, 28�, 37�, 42�, 56� matched well with the diffraction peak of a- MnO2

standard data (JCPDS card PDF file no. 44-0141).[34] XRD of PANi recorded at room tempera-
ture with several diffraction peaks in the 2h range 15–30�. The pattern shows sharp and well-
defined peaks, which indicate semi-crystalline nature of PANi. The crystalline nature of PANi is
due to its nano fibrous form and planer nature of benzenoid and quinoid functional groups.[35]

XRD spectra of PTh shows only one broad peak centered at near 2h value of 35�. This diffrac-
tion peak strongly associated with the p-p stacking structure in PTh chains. Thus, spectrum
shows that the semi-crystalline nature of PTh.[36] The XRD pattern of PIn showing a broad
hump which suggests an amorphous structure which is the characteristic of PIn.[31] It is observed
from the XRD of PPy that the polymer is in an amorphous state, and hence there are no sharp
peaks observed in the diffraction pattern. But a broad peak at about 24� of 2h value is observed,
which incidentally is the characteristics peak of amorphous PPy polymer.[37]

The XRD pattern of Mn-PANi composite clearly shows the crystalline phase with shape peaks.
The XRD patterns of MnO2-PIn composite (Mn-PIn), MnO2-PPy composite (Mn-PPy), and
MnO2-PTh composite (Mn-PTh) indicates amorphous nature as there is no sharp peak. Table 1
shows the particle size estimated from XRD analysis.

Figure 2(a–i) shows the SEM images of (a) MnO2, (b) PANi, (c) PTh, (d) PPy, (e) PIn, (f)
MnO2-PANi, (g) MnO2-PTh, (h) MnO2-PPy, and (i) MnO2-PIn, respectively. SEM images shows
the good quality information about the surface topography of as-prepared materials.

Raman spectra of MnO2 clearly showing sharp peaks in the region between 500 and 700 cm�1,
which is characteristic peak of MnO2 (Figure 3).[39] Raman spectra of PANi clearly indicate signal
at 1140, 1230, 1500, and 1582 cm�1. The 1100–1210 cm�1 region indicates C–H bending vibra-
tions of benzene or quinone type rings. The 1210–1520 cm�1 region denotes C-N stretching
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vibrations and 1520–1650 cm�1 region represents C–C stretching vibration of benzene and quin-
one type rings.[40]

PTh shows sharp peak at 1209, 1379, and 1651 cm�1. Signal near 1600 cm�1 shows unques-
tionably frequency dispersion with increasing chain length. Peak near1500 cm�1 is a common fea-
ture of/the Raman spectra of aromatic and heteroaromatic systems. It is always very strong and
dominates the whole Raman spectrum. While it shifts to lower frequencies when chain length
increases. It shows somewhat different frequencies from one chemical series to another within the
class of oligo and PThs, but within each class it is almost invariably strong and unshifted. Some
signals which appear at the lower frequency side shows intensity enhancement with increasing

Table 1. Particle size of MnO2, polymers, and their composites.

Compound Estimated particle size by Scherrer equation D(nm)¼ Kk/bCosh (nm) [38]

MnO2 61.32
Polyaniline (PANi) 84
Polythiophene (PTh) 108.51
Polypyrrole (PPy) 108.13
Polyindole (PIn) 10.28
MnO2-polyaniline composite (Mn-PANi) 90.16
MnO2-polythiophene composite (Mn-PTh) 132.87
MnO2-polypyrrole composite (Mn-PPy) 91.23
MnO2-polyindole composite (Mn-PIn). 7.20
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Figure 1. XRD patterns of (a) MnO2, (b) PANi, (c) PTh, (d) PPy, (e) PIn, (f) MnO2-PANi, (g) MnO2-PTh, (h) MnO2-PPy, and (i)
MnO2-PIn.
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chain length.[41] PPy shows signal at 1330 cm�1 which corresponds to C–C stretching in ring and
antisymmetric C–N stretching.[42] PIn shows signal 1102 due to out-of-plane as well as in-plane
deformation of N-H, peak near 1594 corresponds to C¼C backbone stretching and peak at 1414
due to ring stretching.[43,44]

In this work, UV–VIS technique was used to know the absorption wavelengths of materials
and band gap (Figure 4). The energy band gap of sample can be calculated using relations:
E¼ hc/k,[45] where, Energy (E) ¼ Band gap, Planks constant (h)¼6.626� 10�34 J s, Velocity of
Light (c)¼ 2.99� 108 m/s, and Wavelength (k) ¼ Absorption peak value. 1 eV ¼ 1.6� 10�19 J
(Conversion factor). Table 2 shows the band gap values of as-prepared materials.

In PL spectra, MnO2 signal is found to in range of 300–800 nm (Figure 5). The spectrum
exhibits prominent emission bands located in green–violet spectral region. A broad weak emis-
sion in the green region is observed at around 520 nm which can be ascribed to the surface
defects or surface dangling bonds.[46–48] PANi shows peak at 367 nm, due to p ! p� transi-
tion.[49] PTh shows absorption near excitation wavelength 325 nm.[50] PL signal for PIn can be
observed which comes from the recombination of electron in singly occupied oxygen vacancies
with photo exited holes.[51–53] PPy shows PL emission peaks near 400 nm. However, agglomer-
ation affects the PL intensity of the polymer.[51] This PL emission characteristics demonstrate the
promise of the synthesized materials for practical applications in ultraviolet and visible light emis-
sion devices.

Figure 6 shows the cyclic voltammetric (CV) curves of MnO2, PANi, PTh, PPy, PIn, Mn-
PANi, MnO2-PTh, MnO2-PPy, and MnO2-PIn recorded at a scan rate of 50mV s�1. The CV
curves clearly shows that prepared composite has higher supercapacitive properties than sperate
MnO2, PANi, PTh, PPy, and PIn. The superior supercapacitive properties of composite attributed

Figure 2. SEM images of (a) MnO2, (b) PANi, (c) PTh, (d) PPy, (e) PIn, (f) MnO2-PANi, (g) MnO2-PTh, (h) MnO2-PPy, and (i)
MnO2-PIn.
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to synergetic effect between conducting polymers and MnO2. Specific capacitance has been esti-
mated using the relation (Equation (1))[45]

Cs ¼ I
m� v

ðFg�1Þ (1)
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Figure 3. Raman Spectra of (a) MnO2, (b) PANi, (c) PTh, (d) PPy, (e) PIn, (f) MnO2-PANi, (g) MnO2-PTh, (h) MnO2-PPy, and (i)
MnO2-PIn.
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where I is the average current during anodic and cathodic scan (A), m is the mass of the elec-
trode (g), and v is the scan rate (V). In our case, the highest value of specific capacitance was
associate with Mn-PANi composite, which was found to be 633.75 Fg�1 at a scan rate of 50mV
s�1. The significant enhancement in electrochemical performance was attributed to improved car-
rier density, which results in good electrical conductivity.[54] Further study, confined about Mn-
PANi composite, as it is optimized sample in this study.

Table 2. Band gap and Absorption peak values for MnO2, Polymers and their composites.

Compound Absorption peak value (nm) Band gap (eV)

1. MnO2 410 3.02
2. Polyaniline (PANi) 310 3.99
3. Polythiophene (PTh) 265 4.67
4. Polypyrrole (PPy) 440 2.82
5. Polyindole (PIn) 249 4.98
6. MnO2-Polyaniline composite (Mn-PANi) 241 5.14
7. MnO2-Polythiophene composite (Mn-PTh) 339 3.66
8. MnO2-Polypyrrole composite (Mn-PPy) 394 3.15
9. MnO2-Polyindole composite (Mn-PIn) 250 4.95
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Figure 5. PL spectra of MnO2, PANi, PTh, PPy, PIn, MnO2-PANi, MnO2-PTh, MnO2-PPy, and MnO2-PIn.
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Figure 7 shows the galvanostatic charge/discharge (GCD) curves of Mn-PANi composite. The
GCD curves of Mn-PANi composite is nearly symmetric. As expected, Figure 7 shows that the
Mn-PANi composite based electrode shows longer discharge time. It is due to the highest specific
capacitance associated with Mn-PANi composite. Better electrochemical performance of Mn-
PANi composite accredited to synergetic effect between MnO2 and PANi.

Figure 8 depicts the capacitance drops in Mn-PANi composite. The Mn-PANi composite
exhibits good stability with �98.28% capacitance retention after 1200 cycles. Stable performance
of Mn-PANi composite is ascribed to enhanced electrical conductivity and highly stable surface
redox reaction.[55]

Table 3 shows the recent reports on supercapacitive properties of Mn-PANi composites and
their comparison with findings of this work.
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Figure 7. Galvanostatic charge/discharge curves of the MnO2-PANi composite collected at a current density of 10mAcm�2.
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Figure 8. Cycle performance of the MnO2-PANi composite measured at a scan rate of 50mV s�1 for 1200 cycles.

Table 3. Comparison of present work with some recent reports on supercapacitive properties of MnO2-PANi composites.

Electrode material Method Specific capacitance (Fg�1) References

Polyaniline–MnO2 nanotube hybrid
nanocomposite

In situ polymerization 626 [56]

MnO2 nanorods intercalating graphene oxide/
polyaniline ternary composites

Ex-situ approach 512 [57]

Ultralong manganese dioxide/polyaniline
coaxial nanowires

Ex-situ approach 346 [58]

MnO2-PANi composite Ex-situ approach 633.75 This work
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Conclusions

In this work, we successfully prepared the composites of MnO2 and PANi, PTh, PPy, and PIn
and mainly studied their supercapacitive properties. Similarly, the composites were characterized
by XRD, SEM, Raman spectroscopy, UV–VIS spectroscopy, and PL. The highest value of specific
capacitance was associate with Mn-PANi composite, which was found to be 633.75 Fg�1 at a scan
rate of 50mV.s�1. The main accomplishment of this study is that MnO2-PANi composite shows
stable performance up to 1200 cycles.
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